773 research outputs found

    Sorting live stem cells based on Sox2 mRNA expression.

    Get PDF
    PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner

    Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models

    Get PDF
    PublishedJournal Article© Author(s) 2015. To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr-1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in carbon changes arising from initial conditions is dominated by model disagreement on turnover times, whereas inter-model spread in carbon changes from fractional changes to these terms is dominated by model disagreement on changes to productivity in response to both warming and CO2 fertilization. However, the lack of changing turnover time control on carbon responses, for both live and dead carbon pools, in response to the imposed forcings may arise from a common lack of process representation behind changing turnover times (e.g., allocation and mortality for live carbon; permafrost, microbial dynamics, and mineral stabilization for dead carbon), rather than a true estimate of the importance of these processes.This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups listed in Table 1 for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. CDJ was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems

    Get PDF
    A current global trend towards intensification or specialization of agricultural enterprises has been accompanied by increasing public awareness of associated environmental consequences. Air and water pollution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for temperate climates, and provides some background to the discussion in subsequent papers evaluating specific farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed. Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from manure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to practical approaches for reducing N and S losses, and improving the overall synchrony between supply and demand

    Abatement costs of alternative tax systems to regulate agricultural nitrogen loss

    Get PDF
    Nitrogen emissions from agriculture are considered an important environmental problem in Denmark motivating consideration of different tax schemes as regulatory instruments. In this paper, input/output behaviour of Danish pig farmers is estimated with farm level panel data using the dual profit function approach, and emission functions for nitrogen loss are derived. With the estimated model we are able to compare cost-effectiveness of a comprehensive Pigouvian tax on nitrogen loss with simpler tax schemes that focus on nitrogen use. We find that both a fertilizer tax and a feed tax generate substantially higher abatement costs than Pigouvian incentives. A tax on nitrogen in all inputs will, on the other hand, only generate a marginal increase in abatement costs. These results are of interest because a tax on all nitrogen inputs is easier to implement than a comprehensive nitrogen loss tax. Our result implies that even a limited administrative cost advantage may make the input tax preferable to implementing Pigouvian incentives through an nitrogen loss tax

    Tuberculous dilated cardiomyopathy: an under-recognized entity?

    Get PDF
    BACKGROUND: Tuberculosis (TB) is a common public health problem in many parts of the world. TB is generally believed to spare these four organs-heart, skeletal muscle, thyroid and pancreas. We describe a rare case of myocardial TB diagnosed on a post-mortem cardiac biopsy. CASE PRESENTATION: Patient presented with history suggestive of congestive heart failure. We describe the clinical presentation, investigations and outcome of this case, and review the literature on the involvement of myocardium by TB. CONCLUSION: Involvement of myocardium by TB is rare. However it should be suspected as a cause of congestive heart failure in any patient with features suggestive of TB. Increasing recognition of the entity and the use of endomyocardial biopsy may help us detect more cases of this "curable" form of cardiomyopathy

    The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating

    Get PDF
    Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed

    Accounting for risk in valuing forest carbon offsets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests can sequester carbon dioxide, thereby reducing atmospheric concentrations and slowing global warming. In the U.S., forest carbon stocks have increased as a result of regrowth following land abandonment and in-growth due to fire suppression, and they currently sequester approximately 10% of annual US emissions. This ecosystem service is recognized in greenhouse gas protocols and cap-and-trade mechanisms, yet forest carbon is valued equally regardless of forest type, an approach that fails to account for risk of carbon loss from disturbance.</p> <p>Results</p> <p>Here we show that incorporating wildfire risk reduces the value of forest carbon depending on the location and condition of the forest. There is a general trend of decreasing risk-scaled forest carbon value moving from the northern toward the southern continental U.S.</p> <p>Conclusion</p> <p>Because disturbance is a major ecological factor influencing long-term carbon storage and is often sensitive to human management, carbon trading mechanisms should account for the reduction in value associated with disturbance risk.</p

    Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program

    Get PDF
    After a meal, the gastrointestinal tract exhibits a set of behaviours known as the fed state. A major feature of the fed state is a little understood motor pattern known as segmentation, which is essential for digestion and nutrient absorption. Segmentation manifests as rhythmic local constrictions that do not propagate along the intestine. In guinea-pig jejunum in vitro segmentation constrictions occur in short bursts together with other motor patterns in episodes of activity lasting 40–60 s and separated by quiescent episodes lasting 40–200 s. This activity is induced by luminal nutrients and abolished by blocking activity in the enteric nervous system (ENS). We investigated the enteric circuits that regulate segmentation focusing on a central feature of the ENS: a recurrent excitatory network of intrinsic sensory neurons (ISNs) which are characterized by prolonged after-hyperpolarizing potentials (AHPs) following their action potentials. We first examined the effects of depressing AHPs with blockers of the underlying channels (TRAM-34 and clotrimazole) on motor patterns induced in guinea-pig jejunum, in vitro, by luminal decanoic acid. Contractile episode durations increased markedly, but the frequency and number of constrictions within segmenting bursts and quiescent period durations were unaffected. We used these observations to develop a computational model of activity in ISNs, excitatory and inhibitory motor neurons and the muscle. The model predicted that: i) feedback to ISNs from contractions in the circular muscle is required to produce alternating activity and quiescence with the right durations; ii) transmission from ISNs to excitatory motor neurons is via fast excitatory synaptic potentials (EPSPs) and to inhibitory motor neurons via slow EPSPs. We conclude that two rhythm generators regulate segmentation: one drives contractions within segmentation bursts, the other the occurrence of bursts. The latter depends on AHPs in ISNs and feedback to these neurons from contraction of the circular muscle

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
    corecore